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Abstract. A set of general equations for Maker fringes, applicable to all crystal structures 
and orientations. has been derived. Alternative forms of the equations are given, suitable 
for numerical work or for analytical reduction in cases where symmetry or other factors 
reduce their complexity. Formulae for special cases have been obtained from the general 
equations and the results compared with previously published work. The case of monoclinic 
symmetry has been discussed in more detail and a numerical example of the application of 
the formulae to the study of the d-coefficients is presented. 

1. Introduction 

Second-harmonicgeneration in systems with interfaces that are flat to within acoherence 
length inevitably leads to the production of Maker fringes [I] except in those particular 
orientations where phase matching occurs. The determination of the detailed structure 
of the x ( ~ )  tensor therefore usually involves a study of these fringes at some stage. The 
intensity of the second harmonic is determined by the values of the elements of and 
is related to the amplitude of the fringes, which follows an envelope function as the angle 
is varied. The spacing of the fringes is related to differences between combinations of 
refractive indices at the fundamental frequency (U) and the doubled frequency (2w). 
Valuable information about linear and non-linear optical properties can therefore be 
extracted from a careful study of the Maker fringes. 

The most complete treatments of the theory of Maker fringes are to be found in the 
work of Kurtz and Jerphagnon [2] and Kurtz [3, 41, but the analysis is restricted to 
relatively high-symmetry uniaxial crystals, or in other cases to certain special orien- 
tations. 

Organicmaterials, with very large non-linear susceptibilities, are currently of interest 
in optoelectronics [5 ] ,  and these materials usually crystallize in the orthorhombic, 
monoclinic or triclinic systems, the most common form, at least among those crystals at 
present under investigation, being monoclinic. 

In monoclinic crystals only one crystal axis necessarily coincides with a dielectric axis 
andthe other twodielectricaxesmayrotateabout the fixedaxisas thefrequencychanges. 
In triclinic crystals there is no necessary relationship, dictated by symmetry, between 
the crystal and dielectric axes. In the course of investigations on monoclinic organic 
crystals the need for a more general treatment of the fringes has therefore arisen. It is 
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also the case that, even for high-symmetry crystals. more information would be obtained 
if fringes generated at a variety of unsymmetrical orientations could be interpreted. 
Consequently, it seems pertinent to attempt to provide a generalized scheme of cal- 
culation for the Maker fringes. 

In the present paper a general procedure for the analysis of Maker fringes in crystals 
with parallel entry and exit faces is derived, and the formulae are then specialized to 
give explicit equations for commonly occurring orientations, particularly in monoclinic 
systems. An example of the application of the equations to derive information about the 
relative values of &coefficients in an unsymmetrical monoclinic case is given. 

In subsequent papers the theory will be applied to the analysis of experimental data 
obtained for a number of monoclmic non-linear organic materials. 

P Pavlides and D Pugh 

2. The non-linear wave equation 

In a material with negligible magnetic susceptibility, the electric and magnetic radiation 
fields satisfy the equations 

v x v x E = - p o  a2D/at2 ( l a )  

D =  E & + P  ( Ib )  

aniat = -(1/p0)v x E ( 1 4  

where P is the polarization. In the parametric approximation (see for example [6]) ,  the 
non-linear source term at 2w is derived only from the primary field of frequency w ,  so 
that the equations for the w and 2w Fourier components of the field can be separated. 
The two frequency components of the field and polarization are written 

E(r,  r) = Re[E(w) e-rwr + E(2w) e-'"'] 

P(r, f) = Re[P(w) e-"' + P(2w) e-zi"'] 
( 2 4  

(2b) 
where 

P(-Q)*  = P ( Q )  

and $2 denotes either w or 2w. 
The constitutive relations, including the second-order effect, are 

P ( ' ) ( Q )  = E~X")(-Q;Q):E(Q) 
P ' 2 ) ( 2 ~ )  = & 0 ~ ' ~ ' ( - 2 0 ;  W ,  w):E(w)E(w) 
&(Q) = 1 + x '" ( -Q:Q) .  ( 3 4  

Substitution into equations (lb) and (la) then leads to the wave equations for E ( w )  
and E(2w),  i.e. 

V X V X E ( o )  - ( w / c ) ~ E ( O ) : E ( ~ )  = O  

V X V X E(2w) - ( ~ @ / C ) * E ( ~ W ) : E ( ~ W )  = 9 ( 2 w )  

9 ( 2 0 )  = ( ~ W / C ) ~ X ( - ~ W ;  W ,  W )  :E(w)E(w).  

(4) 

(5) 

(6)  

for the fundamental and 

for the second harmonic, where 
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Here and in the rest of this paper the non-linear susceptibility for frequency doubling is 
denoted simply by x or xifk. 

z =L i 
i I Ciyrtnl 

.?=O 

3. Laboratory set-up, coordinate system and notation 

The type of experiment that is to be analysed is shown schematically in figure 1. The 
diagram represents a plan view of the experiment as seen from above the optical bench. 
The crystals are usually available in the form of thin, cleaved slices of thickness -1 mm 
or of rather thicker polished slabs (-4 mm). In either case there is a pair of opposite 
parallel faces through which the light enters and leaves the crystal. In figure 1 these 
parallel faces are in the planes z = 0 and z = L. The r axis is therefore the normal to the 
face of the slabs; the x axis lies in the entry face of the slab and also in the plane of 
incidence. They axis is normal to the plane of incidence and, with the senses ofx and z 
as shown in the figure, points in to the plane of the paper to make xyr a right-handed 
set. The coordinate system xyr is a laboratory system and has no necessary relation to 
the internal crystal symmetry or the principal dielectric axes. 

All the calculations in this paper are referred to the laboratory system of axes. The 
disadvantage of this procedure is that the dielectric tensors at w and 2w are no longer 
diagonal and the elements ofX are not directly referred to the conventional piezoelectric 
system. The disadvantages are outweighed by the necessityof working in onecoordinate 
system that is simply related to the boundary conditions. The transformation of E and x ' 
from the principal axis and piezoelectric systems can be effected by standard tensor 
methods. The d-coefficient notation is reserved for quantities referred to the standard 
piezoelectric system; in the laboratory system the elements of the second-order sus- 
ceptibility are always denoted by x j a .  

For an anisotropic crystal, a plane wave of frequency w incident at an angle 6 will, 
ingeneral, give rise to two plane waves of the same frequency in the crystal. These will 
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Figure 2. w waves. Schematic representation of the w a v s  present at the fundamental 
frequency 0: I = 1, incident wave; I = 2, reflected wave; I = 3,4.  refracted waves, 

generate three polarization waves at 2w with associated bound electromagnetic fields 
and there wiU also be two independent free-wave solutions at 2w. In addition there are 
reflected, internally reflected and transmitted waves. It is convenient to label each wave 
with a single index, denoted in the following by lor  J .  The system of numbering is shown 
in figure 2 for w waves and in figure 3 for 2 0  waves. 

Figure 3. 20, waves. Schematic diagram of the waves present at the double frequency 2w: 
I =IO, reflected wave; I = 5,6,7, polarization (bound) waves; I = 8,9, free waves; I = 11. 
12, internillly reflected waves; I = 13, transmitted wave. 

Multiple internal reflections are neglected; correction factors of the kind discussed 
by Kuru and Jerphagnon [2] can be introduced into the final expressions if necessary. 
The first internally reflected2w waves, 11 and 12, must be included toobtain aconsistent 
solution of the boundary conditions at z = L. 

Each of the frequency components E(w) in equation (2) is made up of a sum over 
plane-wave components of the form 

where each I refers to the particular frequency, w or 2w. The unit polarization vector 8, 
has components efi (i = x, y ,  z )  and the alternative notation El, (i = x, y ,  z )  is sometimes 
used for the components of the field, to avoid cumbersome normalization algebra. 
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The wavevectors kl remain in the plane of incidence so that kly = 0 for all I .  Fur- 
thermore, to satisfy the boundary conditions over the whole entry and exit faces, 

k1x = kl, when Q 1  = w 

kiL = 2kix when BI = 20. (8 )  

The problemofdetermining the wavevectorsofthe free wavesin thecrystal therefore 
reduces to that of finding the k,z values. Since it is anticipated that in many cases 
a numerical approach to the calculation will be made, it is convenient to introduce 
dimensionless variables cl, such that 

51 k I J k d Q 1 )  

where 

k,,(w) = w/c = k l  

kV,,(2w) = 2w/c = 2k , .  (9) 

When 0 and ely are fixed, the problem is completely defined in the sense that the 2w 
output for any polarization can be computed as a ratio to E ! ,  provided all the material 
parameters ( E ,  ,y) are known. 

Relationships between the parameters describing the waves in U ~ C U O  (1,2, 10 and 
13) are summarized in table 1 .  The quantity 

Y I  = -[1/kvac(%)1(h x 6 1 ) ~  =Se!, - helr (10) 

which appears in the boundary conditions for the magnetic field, is also included. In this 
tableandthroughoutthepaper,s = sin Oandc = cos 0,whereOistheangleofincidence. 

Table 1. External waves. The table contains relationships between the parameters charac- 
terizing the incident, reflected and transmitted waves outside the crystal. These equations, 
resulting from the transverse nature of the vacuum waves, have been used, implicitly, in 
derivingtheresultsinthetext.Hereandelsewhere,c= cost?,s=sin b'andy,=~e,~ - 

Incident wave: I = 1. n, = 0 

k,, = k,s 
k , ,  = k , c  E , = c  

Reflected wave': I = 2, R, = w 
kb = k ,s  = c(l - .;p e>= --c Y Z  = eblc k,: = - k ,c  = (s/c)ek 

Reflected wave": I = 10. R, = 2w 

Transmitted wave: I = 13. Q. = 2w 
k,,x = 2k,s 
kll: = 2k,c EM = c 

" The signsolthe*components of the polarization for reflectedwaves arechosen arbitrarily. 
The sign of the amplitudes E2 and E,", determined from the boundary conditions, auto- 
matically adjusts the relative signs. 
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4. Solution of the wave equations 

Equations(4), (5)and(6)cannow be writteninamoreexplicit form. Define theoperator 

P Paolides and D Pugh 

k i p )  = {1/[!4Q)]Z} (0 x v x - ( Q / c ) * E " : ]  (11) 
where a superscript notation has been introduced to indicate the frequency dependence 
of E .  The action of ki on fields of the form defined in equation (7) can be expressed in 
matrix form as 

P ( Q ) E / ( Q )  F(Ei, E')E/ (Q)  = F(Ei, E ' ) B , E i  e"~" (12) 

where 

E 2  - E ,  -Ev - @ E  + E m )  

F(E, E ) =  -sxy E 2  + S2 - Eyy - E y r  1. i (13) 
-(SE + E x , )  - Eyr S2 - E,, 

The superscript notation E ' ) ,  indicating that the dielectric tensor is afunction of the 

The polarization vectors of the fundamental waves 3 and 4 satisfy equation (4) in the 
frequency of wave I ,  isshortened to &'where this can be done without ambiguity. 

form 

F(E,, E'")&, = 0 (144 

I F ( E i ,  &'")I = 0. (14b) 

which only has non-trivial solutions if 

Equation (146) is Fresnel's equation of wave normals 171 expressed in the laboratory 
coordinate system, which leads to a quartic equation for 5'. In special cases the &values 
can be extracted analytically from this equation, which is obtained explicitly from the 
expansion of the determinant 

-lF(E, E ) (  = E z z g 4  + 2E,& + [ E n ( s z  - E y y )  + Exx(Sz - e r r )  f E:. + E : z l E z  

+ h [ E s z ( S 2  - E y y )  + E x y E y z ] g  + Erx(S* - E y y ) ( S z  - E,) + & ( S Z  - E z z )  

+ E : , ( S ~  - E ~ ~ )  - E , E ; ~  + ~ E , E ~ E ~ ~ .  (15) 
It follows by transformation to aprincipal-axissystemorby direct analysisofequation 

(15) [7] that there are always four real roots for 5, of which two are positive and two 
negative. The two positive roots of equation (14b) are the values of 5; and E4. The 
vectors 2, and S4 are obtained by substituting these 5 values back into equation (14a). 

The free second-harmonic waves, 8,9,11 and 12, are obtained in the same way from 

F(c,, E&)&/  = 0 (164 
M E i ,  &?")I = 0. (16b) 

The two positive roots of the associated determinant give and E,, and the two 
negative roots Ell and &. Only in special cases are Ell and El2 equal to -E8 and -E9. 
The amplitudes of the waves in the crystal are calculated below by solving boundary- 
condition equations. Suppose that this has been done for the w waves and that E ,  and 
E4 are known. If equation ( 5 )  is divided by 

[k"&W)lz = ( 2 k d Z  
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it can be rewritten as 

fi(2w)E(2w) = [1/(2kl)2]9(2w) = P(2w) = x:(E3 + E 4 ) ( E 3  + E 4 ) .  (17) 
The components o f P  are written 

7 

P , ( Z W )  = 2 p a  ezic*lzE: 

5 5  = 5 3  

1=5 

where 
56 = 5 4  5 7  = N - 3  + 54) 

In equation (18) the summation is over the three polarization waves, then dependence 
has been omitted and 

where the summation convention over repeated coordinate indices is implied and the 
projection factors n,ji and transmission coefficients r, are given explicitly later in table 2. 
Equation (17) becomes 

PI; = ~ ; j k x f J k r f  (20) 

7 

P ( ~ w ) E ( ~ w )  = pf e 2 ' E I k I Z P  1 '  (21) 
1=5 

The solution of equation (21) consists of a linear combination of the two free waves, 
8 and 9, solutions of the homogeneous part of (21) and a particular solution of the 
inhomogeneous equation. The free waves 11 and 12 are not included. Their effect at the 
z = 0 boundary is assumed to be negligible, so that the amplitudes E, and Es are 
determined at this boundary without reference to them. The inhomogeneous field is 
made up from the sum of three terms, each having the same z dependence as one of the 
polarization components. These are obtained by solving equation (21) separately for 
each polarization wave: 

F(2w)E, eZEik12 = p I  eZiE1ktzE: 1 = 5 , 7  (22) 

E , I G  = F-'(5,, E~"')PI = lF(51, &'"')l-'F4(51, ~ * " ' ) p ,  1 = 5 , 7  (24) 
where FA is the adjoint matrix of F. 

The values of El are predetermined for the polarization waves, so that IF(CI, e2"')I is 
not zero except in the special cases that produce phase matching. The adjoint matrix is 
useful when explicit formulae are to be derived in cases where symmetry somewhat 
simplifies the equations. The matrix FAO, E )  is symmetric and its distinct components 
are 

FA Fo(s' - E J  - E:. 

F$ = cJy(sZ - cz2) + E Y z ( S 5  + 
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where 
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Fo = S' f E 2  - EYY FE = ( E 2  - E,)(s' - cZz)  - szEz. ( z b )  
The notation 0 and E relates to the factorization of the matrix into FoFE when E 

is diagonal. The values of 5 obtained from these factors refer to the ordinary and 
extraordinary waves, ordinary here having the meaning that the electricvector is normal 
to the plane of incidence. 

5 .  The boundary conditions 

At each boundary the E and H field components parallel to the boundary surface must 
be continuous. In the coordinate system defined, E,. E", (V X E) ,  and (V x E)Y must be 
continuous at z = 0 and z = L. Since k,, is zero, the two curl terms can be replaced by 
5plyE, and y,E,, respectively. At the z = 0 boundary the w wave conditions are used to 
determine E, and E, and the 20 wave conditions (neglecting Ell and Elz) to find E ,  and 
Eo. At z = L the 2w equations are solved for the transmitted wave components. 

Each set of boundary conditions consists of four equations from which two of the 
four unknownscan always be eliminatedin aspmetricandmanipulativelyeasy manner, 
after which the equations will have a form such as 

where m is a predetermined vector and M a 2 X 2 matrix of factors determined from the 
free-wavecharacteristics. EL and Eb are the remainingunknown fields, including factors 
such as Er1 or Ei2.  The vector on the right is sometimes the resultant of a sum over 
known waves: 

The following notation is therefore introduced: 

The general symbols M and m are replaced by symbols specific to each set of boundary 
conditions: 

U, U 

v, U 
w, w 

for w conditions a t  z = 0 

for 2w conditions a t  z = 0 
for 20 conditions at z = L. 
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(i) Boundary conditions for o waves at z = 0: 

E , e ,  + E 2 e ,  = E3e, + E4eax 

Ele l ,  + E~t-2, =EA,  + E4edY 

51Ele1y + EzE2e2, = 53E3e3, + E4E4e, 

Y I E I  + ~ 2 E 2  ~ 3 E 3  + y&4. ( 2 9 4  

( 2 9 4  

(296) 

( 2 9 4  

Eliminating (E2/El)e,  and (E2/El)eZy and usingvaluesof yl, y2, 5, and 
leads to 

from table 1 

Elimination of Eloelh and Eloeloy leads eventually to 
7 7 

E d E :  = 2 Vl1/V E9/E? = V21/V 
I = 5  I=5 

where 
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(iii) Boundary conditions for 20 waves at z = L: Factorsf, = e")'*+ now appear as 
a result of the phaseshifts between z = 0 and z = L. The four equations are 

9 

Ei3e13yfi3 - Ellellyfll - Eizeizyfiz = (Eiy/E:)fiEi (35b) 

Si3Eisei,yfi3 - EiiEi ie i iyf i i  - = E (Eiy/E?)EifiE: (354 

Y13E13f13 - Y I I E l l f l l  - Y 1 Z E l Z f 1 Z  = 2 [ d E l z / E : )  - Ef(Efz/E:)lflE:. 

1=5  

9 

I =  5 
9 

( 3 5 4  
1=5 

In this case it is easiest to eliminate the E,, components first and solve for Ell and El,. 
The values of Ell and E,, are then substituted back into the first two equations to find 
the components of E13. Following this procedure leads to 

where 

Q f i  = W 1 1 / W h ,  + ( W z / W ) e , ,  + EiiIE: i = x l y .  (40) 
The phase factorf,, is unimportant and can be omitted. The transmitted second-har- 
monic intensities of the x and y components are proportional to 
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Forthelimitingcaseofaverythincrystal(L + O),equation(42)predictsthat thesecond- 
harmonic intensity is given by 

If all multiple reflections were included coherently, the intensity obtained from a very 
thin slab should tend to zero. The magnitude of the first term on the right of equation 
(42) is therefore of the order of the contributions neglected in the approximation used 
in this model and it is omitted in the rest of the analysis. It can be shown directly in 
special cases that the L-independent term is small compared to the second term in 
equation (42). With this approximation the second-harmonic intensities reduce to 

9 9  

Maker fringes are produced by interference between the free and bound second- 
harmonic waves. The formula describes all possible types of Maker fringes and additional 
interference effects between one free wave and the other and among the three bound 
waves. The mutual interference of the two free waves is analogous to the conoscopic 
interference occurring in the linear optics of biaxial crystals. Since the dispersion due to 
birefringence and the frequency dispersion are often effects of comparable magnitude, 
it is to be expected that, in more complicated optical geometries that do not isolate one 
or other phenomenon, mixed effects may sometimes be observed. 

Maximum information will be obtained if the second-harmonic intensities are 
measured for two cases of orthogonal polarization, most conveniently chosen to be 
normal and parallel to the plane of incidence. Denoting the intensities in the two cases, 
respectively, by 9o and 9, and relating the total parallel intensity to that of the x 
polarization direction by a factor (l/cz) gives 

9 9  

= -4 QlyQJy  sin2[kl(fl - (45) 

$ElE: = -(4/c2) Q ~ Q J ~  Sin2[kl(El - (46) 

1=5 J = 1 + 1  
9 9  

I = 5 / = l + l  

The equations derived to this point are sufficient to allow a numerical computation 
of the angular dependence of the second-harmonic intensity to be made provided that 
the em, and ,y tensors are known. All El values can be found from equations (146), 
(166) and (19) and the corresponding 6, vectors for the free waves from the associated 
linear equations, (14a) and (16a). Standard numerical methods are readily available. 
The quantity y, can be constructed from El and 8,. The w fields, E ,  and E,, can then be 
found from (30) and (31), the polarization waves from (20) and (24), the free 2w waves 
from (33) and (34), and the Wand Q values from (37) and (40). 

The above procedure could be used with numerical optimization to refine incom- 
pletely determined ,y matrices, or to check observations made with new geometries 
when the elements of ,y have been determined in more symmetrical arrangements or by 
the phase-matching method. Very often some of the elements will have been estimated 
using Kleinman symmetry 16, 81 and the application of the more general equations 
should allow this approximation to be tested. 
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With new organic materials the information available will often be fragmentary 
and an independent determination of the tensor by the Maker fringe method will be 
necessary. In these circumstances it will be advantageous to arrange the formulae to 
isolate the contributionsof individual elementsof the tensor. For low-symmetry crystals 
this end is not completely attainable but the formulae can be rearranged in a manner 
that allows the contributions of individual elements and small groups of elements to be 
more explicitly exhibited. This rearrangement is carried out in the next section and 
applied, in section 7, to particular cases where there is some simplification through 
symmetry. 

6. Derivation of a more explicit general formula 

In equation (38) andsubsequent equations, each phase factor appearsonce in each term 
of the summation; so that each spatial periodicity in the fringes is identified uniquely in 
the final formula. This is computationally convenient, but when attempting to identify 
the contributions of small groups of coefficients, it is better to extract them from the 
polarization terms and group them together. To do this the free fields must be expressed 
explicitly in terms of the bound fields. A further advantage that then accrues is that each 
phase-matching denominator, IF& E~"')I(I= 5 ,  7), is separated as a factor in only 
one term of the sum, Small values of these denominators can often so enhance the 
contribution of a particular term as to make a substantial reduction in the number of d-  
coefficients that effectively contribute to the signal. 

In the following, (Y = 8, 9 is an index used to identify the free waves at 2 w .  The 
repeated index summation convention is implied over the coordinate indices (j, k ,  I ,  m, 
n) but not over the indices I ,  (Y that label the different waves. Expressions for the various 
coefficients that are introduced during the rearrangement are collected together in table 
2. 

Expanding the right-hand side of equation (33) gives the free-wave amplitudes E ,  
and E ,  in terms of the bound-wave components 

and, using equations (37) and (N), each Qlican be written in terms of the corresponding 
electric field 

QI, = B~iE l i .  (48) 
Fromequation (39) the transmitted field vector is 

9 

The free fields, I = 8.9, in equation (49) must be separated and expanded in terms of 
the bound fields: 
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Table 2. Formulae for the evaluation of coefficients. The formulae in this table provide, in 
conjunction with equations (U), (55) ,  (56), (59) and (60). the basis for an algorithm for the 
evaluation of the right-hand side of equation (51). The wave parameters, E, and 4, must be 
known (see section 4) and the x''' tensor is implicit in the Xri. 

U =  ( c +  Ef)eh(eu -cud - (c f 5dedei. - C Y , )  

UI = 2 k e d e ~  -CY,) - e d c  + 5de4?1 
= 2[edc+ W l ,  - c+i. -CY,)] 

t 5 = ( U , / u y  t 6 = ( u * / w  t ,=U,UJU'  
x~jk = +,e3 nq1 = e4,elx 

V = (c + 58)e&-9x - C Y Q )  - ( c  + E&& -  CY^ 
ZW = e,,elt + e 4 , e ~  

Substituting from equation (47) for the free-wave fields, the second sum on the right of 
equation (50) becomes 

9 9 1 1 9  

and inserting this expression into equation (50) gives 
I 

E13i = (fiBiij +fsBsikeskAsij + ~ ~ B ~ I A A & I ~ .  (52) 
I = S  

The summations over k can be carried out first and are written as 

C, = Bbheek. (53) 
Explicit expressions for the bound fields are introduced from equations (20) to (24), 
leading to 

1 

E13i = E: 2 (f1BIij +fsCsiA,j +f9C9iA,j)Fi1F~~Xk(mnllmtr  (54) 
1=5 

where 

FI = I W E I ,  zb) F$k F$(EI, Eb). (55) 
The summation over the jcoordinate index is carried out and an effective second-order 
susceptibility Xlk, connecting fields in the I polarization state to 2w polarization in the k 
coordinate direction, is introduced: 

x l k  = nl /mXklm.  (56) 



Equation (57) can be interpreted physically. Starting from the right, r, are the trans- 
mission factors from the incident wave to the products of the o waves in the crystal. 
The X, are the non-linear coefficients producing second-harmonic polarization of 
the material from the products of the fundamental waves. From this second-order 
polarization, bound electric fields are generated by the factors SgkFYL and free electric 
fields by C,T,,kF;l. Transmission factors at the second surface are included in Sand 
T. In this rearranged form the formula contracts in a very straightforward way to various 
special cases. Some of these are discussed in the next section. 

7. Special cases 

7.1. N o  angular dispersion of the dielectric axes: dielectric and laboratory axes aligned 

It is often the case, even in monoclinic crystals, that the directions of the dielectric axes 
are fixed by molecular symmetry, at least to a sufficiently good approximation to ensure 
that there is effectively no angular dispersion over the frequency range of a particular 
doubling experiment. If it  is then possible to cut crystals so that the laboratory and 
dielectric axes coincide at one of the frequencies, they will remain aligned at the other. 
This is the case to be treated in the present section. The three principal values at each 
frequency willstill, ingeneral, be distinct, The conditionsfor the particularspecialization 
of the general theory defined above are almost always satisfied in work on orthorhombic 
crystals [ 9 ] ,  where the directions of the dielectric axes are fixed by crystal symmetry, and 
the natural cleavage and growth directions will be related to the same axes. 

Most of the formulae given below have appeared in the literature and one reason for 
including them is to show chat the general equations derived in the previous section do, 
in fact, reduce correctly to more familiar special cases. 

The essential simplification arises from the reduction of the dielectric tensors to 
diagonal form: 

(61) 
All internal waves can then be classified as ordinary (0, electric vector normal to plane 
ofincidence) orextraordinary (E, electricvector in planeofincidence), and the solutions 
for the free waves can be chosen as foUows: 

Q -  Q a  
Et, - E ,  4,‘ 

I = 3 , 8 , 1 1  ordinary 

I =  4,9,12 extraordinary. 

The polarization waves I = 5 and I = 6 are then respectively 0 and E. 



General theory of Maker fringes in crystals of low symmetry 98 1 

Table3. Wave parameters for the case ofnection7.1. (noangu1ardispersion;laboratory and 
dielectric axes aligned). 

Explicit formulae for El and dl can now be obtained from the equations of section 4 
and these are collected in table 3. The coefficients calculated by substitution from table 
3 into table 2 are listed in table 4. The number of non-zero S, T and C coefficients is 
reduced by half compared to the general case. Equation (57) then yields reduced 
expressions for the x and y components of the transmitted 2w field: 

7 

E13x = E: I: [ ( S ~ I ~ X I ~  + S.r/zX~zlf~ + C9r(T9/xX/x + T91zx/z)f9lFF’t1 

E13y =ET C ( ~ ~ 1 ~ 1  + ~ a ~ ~ 8 l ~ f 8 ) ~ i ~ x l ~ ~ , .  

(62) 

(63) 

1=5 

7 

/ = 5  

Separate formulae will be derived for the four combinations of input and output polar- 
ization. 

7.1.1. Ordinary incidenct waue. The only polarization wave generated is the ordinary 
wave I = 5, and equations (62) and (63) are further reduced to 

El, = E:[(SxS,xxyy + S,,xryy)f5 + c9x(T95xxvy + ~9szx*yy) f91wt5  (6‘9 

(65) El3y = E?(Sy5yf5 + c8yT85yf8)F<ItSxyyy 

Table4. Non-Zero coefficients tor thecaseotsection7.1 (no angular dispersion; laboratory 
and dielectric axes aligned). 
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where 
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X 5 ,  = ~ 5 1 m ~ t 1 m  e 3 1 e k ~ a 1 m  = 6 1 y a m y X t 1 m  = ~ z y y  (46) 
has been used. Extracting the Maker fringe intensities as in equations (42) to (46) gives, 
in an obvious notation, 

$O-E = - (4E~/c2 )F , -2 f :C9~(S , ,X ,  + s x 5 z X z y y )  

( T 9 5 ~ X m  + T 9 5 z X z y y ) s i n 2 [ k 1 ( ~ S  - h ) L ]  
$0-0 = - ~ E I F s  ~ s ~ s ~ S ~ , T S ~ X ~ ~ ~  sin2[k,(E5 - E&]. 

(66) 

(67) 4 -2 2 

Substitution of values from table 4 produces the final expressions: 
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and 

Equations (68), (69), (74) and (75) include as special cases almost all the formulae 
that have been published in the literature [2,3,4,9], since the experiments described 
have, in the large majority of cases, involved conditions where there is no angular 
dispersion and where laboratory and dielectric axes are aligned. The additional restric- 
tions usually found in published formulae arise from the symmetry of the x tensor for 
particular crystallographic groups. These particular forms can easily be introduced into 
the above equations. 

Thenotation usedin previouswork, whichisusually basedon the WorkofJerphagnon 
and Kurtz [Z], differs from that in the present paper. The conversion between the two 
can be effected through the equation 

E ,  = n, cos 0; 

where n, is the refractive index for the wave I and 0; is the angle of refraction. When 
the plane of incidence is a principal dielectric plane, n, can be calculated from 

l / n :  = (cos2@;)/n: + (sinzO;)/n: n, = &:I2 n, = &:IZ (77) 

Table 5. Case of section 7.2: formulae for variables in equations (80) (plane of incidence is 
a principal dieleclric plane: in monoclinic crystals the monoclinic axis is normal to the plane 
of incidence). 

Owaves:1=3.5.7.8 

E waves: I = 4.6.9, 12 

E,andB,asin table3 

where 
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for extraordinary waves, and for ordinary waves 
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n , = n  = 10 
Y EY . 

In more general cases there is no simple expression for nl.  Denominators of the form 
- 5: become 

5: - 5: = n: cos2e; - n: cos”; = n f  - n: (79) 

where Snell’s law has been used to remove sin%‘ terms. 

of orthorhombic crystals. is described in the appendix. 
As an example, the reduction of equation (75) to an equation used in [9], in a study 

7.2. Plane of incidence is a principal dieIectricplane for frequencies w a n d 2 o  

This is a more general case than the one described in the previous section. The laboratory 
axes in the plane of incidence are not necessarily dielectric axes and the dielectric axes 
in this plane may change direction as the frequency varies. Such conditions are found in 
monoclinic crystals when the unique monoclinic axis, which is a dielectric axis at all 
frequencies by symmetry, is normal to the plane of incidence. The other axis in the face 
of thecrystal will usuallybeacrystalaxis,not coincidingwithadielectricaxis. Dispersion 
of the axes, if it is present, will, in terms of the coordinate system of this paper, be 
confined to a rotation about they axis. 

As in the previous example. all waves can be classified as 0 or E and explicit solutions 
forthe&andBI canbeobtained.Thesearegivenin table5.Thevaluesoftheintermediate 
quantities of table 2 are not shown in this case, but table 5 also contains definitions of 
some combinations of variables appearing in the final equations for the intensity, which 
are given below: 

In section 8 some numerical results computed with equation (SOU) are described, 
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8. An example of the application of the formulae 

To give an indication of the way in which the rather complex formulae of the preceding 
sections can be applied to extract information about the d-coefficients, a preliminary 
example of the new kinds of fringe system that arise in monoclinic crystals is described. 
Here, only computed results are presented, but fringes of the type described have been 
observed and will be reported in detail in a later paper. 

The organic material 2(cu)-methylbenzylamino-5-nitropyridine (MBANP) [10-12] 
crystallizes in the monoclinic non-centrosymmetricspace group p2,, for which the form 
of the d-tensor is given in [SI. The linear optical properties of the crystal have been 
reported [ll, 121 and the dZ2 coefficient, corresponding to 6-axis polarization of the 
fundamental and second-harmonic waves, has been measured [ll, 121. The dielectric 
axes rotate by about 26" between the two frequencies (equivalent to 1.064 pm and 
532 nm) in a standard YAG doubling experiment. Slabs of crystal with parallel faces 
aligned with the (1 OO), (0 10) and (00 1) crystallographic planes can be obtained. The 
(1 00) crystal can be aligned so that the correspondence between crystal and laboratory 
axes is 

X'C y+ b z+a*  

wherea" is the piezoelectricaxisnormal to b andc. The laboratorysystem now coincides 
with the piezoelectric system provided that the conventional labelling of the piezoelectric 
a* and c axes asx and z is interchanged. The corresponding interchanges in the standard 
d-matrix labelling are easily made. The Maker fringes should conform to the analysis of 
section 7.2. Taking the case where thew wave is E and the orthogonal second-harmonic 
output 0 is detected, equation (SOU) is applicable. The non-linear susceptibilities are 
contained in the quantity X,, which reduces for the appropriate d-matrix to 

X,, = e&d, + 2e~.re4,dx + eizdz,. 

At normal incidence e,, is zero and the amplitude of the Maker fringe envelope is 
then determined completely by d,,. An examination of the angular variation of the 
polarization vectors shows that, for angles of incidence less than about 30", the e,l term 
is very much smaller than the others, so that the fringe pattern is essentially determined 
by the values of the two coefficients, d,, and d,. The details of the shape of the pattern 
are also very dependent on the other factors occurring in equation (Son), all of which 
can be calculated provided the linear optical properties are known. Figures 4and 5 show 
the results of such a calculation for MBANP. The d, and d2* values used to compute 
the fringes have initially been taken from theoretical work in which the molecular 
hyperpolarizability tensor i s  first calculated by a semi-empirical quantum-mechanical 
method [ 131 and the crystal x tensor estimated using oriented gas model internal field 
factors, based on the measured refractive indices. Such an approach is only expected to 
be reliable in  a semiquantitative sense. The results of the calculation in this case indicate 
that dzj and d,, are of roughly comparable magnitude but have opposite signs. These 
valuesofd,, andd,, used in equation (SOa), produce the fringesof figure4. The relative 
signs of the two components were then arbitrarily reversed; the new computed fringes 
were then as shown in figure 5. It is apparent that the shape of the asymmetric fringe 
pattern depends very sensitively on the relative values of the contributing d-values. The 
lack of symmetry about the normal to the crystal face occurs because the dielectric axis 
in the plane of incidence are inclined to the face. The position of the centre of the 
fringe pattern-where the fringe spacing is greatest-corresponds to a minimum in the 
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12500 7 

I 

-tO -30 -20 -10 0 IO 20 30 40 

Figore& Computed fringesforthecaseofsection8. The elementsd,andd,,arc asobtained 
from theory. The fringes are shown only where they cdn be sasily resolved on the scale of 
the diagram. near the centre of the system. The envelope function is shown over the whole 
range. The intensity scale isarbitrary. 

argument of the sin2 term in equation (800) and this again is a sensitive function of the 
angular variation of the combination of refractive index principal values (,refered to 
different principal axes) on which it depends. Further confirmatory evidence for the 
values of the linear optical parameters can therefore also be obtained from an analysis 
of thc asymmetry of the fringes. Kurw 131 has discussed the effect of the relative sign of 
different, simultaneously contributing, d-coefficients on the fringes in uniaxial crystals. 
The effect treated here includes, as an additional complication, the rotation of the 

12000 'emo\ 

I 
~~ ~ 

I 
-40 -30 -20 -10 b 10 10 30 40 

Figure 5. Computed fringes for the case of section 8. As for figure 4 ,  but with the sign of d ,  
reversed 
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principal axes between the two frequencies. Numerical work, in which approximate 
treatments were attempted and parameters arbitrarily vaned, has indicated that it is 
essential to include the effect of the rotation of the axes systematically if a reliable 
interpretation of the fringes is to be obtained. 

Fringes, showing features such as those described above, have been observed in 
MBANP, and an analysis of the data will be presented in a later publication. 

The example relates to a comparatively simple case but even here it has proved 
necessary to base the analysis on a treatment that takes account of the low symmetry of 
the crystal. In attempting a full determination of a d-matrix for such a crystal it will 
evidently be desirable to extract as much information as possible from orientations 
where one or two d-coefficients can be isolated. The values so obtained will reduce the 
number of unknown parameters left in the equations that must be applied in the less 
tractable situations. 

9. Conclusions 

A set of general equations for Maker fringes, applicable to all crystal structures and 
orientations, has been derived. Alternative forms of the equations have been presented 
in sections 5 and 6. The former, having a simpler but more implicit structure, is suited 
to numerical work, the latter to analytical manipulation leading to the identification of 
the major contributions to the intensity that often emerge as a consequence of crystal 
symmetry or because of the predominance of terms associated with a particular phase- 
matching denominator. 

It has been shown (section 7) that, when dielectric axes are fixed in direction and 
aligned with laboratory axes, the general equations reduce to forms that have previously 
appeared in the literature for special cases. New formulae for special cases that occur in 
monoclinic crystals are given. 

In section 8 an example is described in which it isshown that the new equations can 
usefully be employed to extract information about the relative signs and magnitudes of 
d-coefficients. 

The system of equations developed in this paper is currently being used, in con- 
junction with experimental studies of Maker fringes, to attempt to make complete 
determinations of the d-matrices of several organic crystals. 
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Appendix. Example of relationship to literature notation 

The orthorhombic point group, “2, has a d-matrix of the form 

0 0 dz4 0 

d32 d33 0 0 0 
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With an alignment of the laboratory (xyz)  and piezoelectric (xuyuzu) axes such that 
xo+ x,y,+ z and zu- y .  theeffective second-order susceptibility, fromequation (73), 
for generating E+ 0 type Maker fringes (equation 75) becomes 

P Padides and D Pugh 

Xis  = E:d31 + (E : /&Y) 'S 'd ,> .  (A21 
Using table 3, and equations (76), (77). (78) and (79), equation (75) gives 

$E-O(e) = 

(COS e + 1 1 0  COS e:)(dU COS e: t t$' COS &,,)(no' COS e)4np COS e;, 
128E: 

[ I z w  COS e: + (?I:)? COS B]~(COS e + COS e;,)3(i" + i F ) * ( n ~  - n?) 

x d:,[cos2 e;,, - (n:/n:)4 sin2 8:(d32/d31)]2  

x sin'[k,(n'" COS e:,, - nt" cos e;",)] ('43) 
where n"' n4  is given by equation (77). The 'normalized enveloped function' is often 
used; i t  is obtained by taking the ratio of the coefficient of the sin2 term at 0 to its value 
at 0 = 0. Recalling that, at 8 = 0, n"' = ii:, substitution in equation (A3) gives 

x sinZ[k,(n: - n?)L] (A31 
and the normalized ratio is 

(ny  (n: -n ;m) ( i  f n 3 3 ( 1  + n : ) y ~ ~ ~ e + n ~ ~ ~ ~ e : )  (iIucose: +n;wcoseLo) 
( n u  + )lTn(<-- (ip ~Ose;~,, + case)? [ ( n ~ ) * ~ c o s B  t n Q O S ~ : ] ~  

x d$,[cos2 e:, - (n:/nY)'sin' 6'L,(d3i/d3,)]2. (A51 
If the interchange y +  z is made to allow for the different labelling of the laboratory 
system in [9]. then equation (A5) is identical with equation (6) of that reference. 
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